13 research outputs found

    End-to-End Encrypted Group Messaging with Insider Security

    Get PDF
    Our society has become heavily dependent on electronic communication, and preserving the integrity of this communication has never been more important. Cryptography is a tool that can help to protect the security and privacy of these communications. Secure messaging protocols like OTR and Signal typically employ end-to-end encryption technology to mitigate some of the most egregious adversarial attacks, such as mass surveillance. However, the secure messaging protocols deployed today suffer from two major omissions: they do not natively support group conversations with three or more participants, and they do not fully defend against participants that behave maliciously. Secure messaging tools typically implement group conversations by establishing pairwise instances of a two-party secure messaging protocol, which limits their scalability and makes them vulnerable to insider attacks by malicious members of the group. Insiders can often perform attacks such as rendering the group permanently unusable, causing the state of the group to diverge for the other participants, or covertly remaining in the group after appearing to leave. It is increasingly important to prevent these insider attacks as group conversations become larger, because there are more potentially malicious participants. This dissertation introduces several new protocols that can be used to build modern communication tools with strong security and privacy properties, including resistance to insider attacks. Firstly, the dissertation addresses a weakness in current two-party secure messaging tools: malicious participants can leak portions of a conversation alongside cryptographic proof of authorship, undermining confidentiality. The dissertation introduces two new authenticated key exchange protocols, DAKEZ and XZDH, with deniability properties that can prevent this type of attack when integrated into a secure messaging protocol. DAKEZ provides strong deniability in interactive settings such as instant messaging, while XZDH provides deniability for non-interactive settings such as mobile messaging. These protocols are accompanied by composable security proofs. Secondly, the dissertation introduces Safehouse, a new protocol that can be used to implement secure group messaging tools for a wide range of applications. Safehouse solves the difficult cryptographic problems at the core of secure group messaging protocol design: it securely establishes and manages a shared encryption key for the group and ephemeral signing keys for the participants. These keys can be used to build chat rooms, team communication servers, video conferencing tools, and more. Safehouse enables a server to detect and reject protocol deviations, while still providing end-to-end encryption. This allows an honest server to completely prevent insider attacks launched by malicious participants. A malicious server can still perform a denial-of-service attack that renders the group unavailable or "forks" the group into subgroups that can never communicate again, but other attacks are prevented, even if the server colludes with a malicious participant. In particular, an adversary controlling the server and one or more participants cannot cause honest participants' group states to diverge (even in subtle ways) without also permanently preventing them from communicating, nor can the adversary arrange to covertly remain in the group after all of the malicious participants under its control are removed from the group. Safehouse supports non-interactive communication, dynamic group membership, mass membership changes, an invitation system, and secure property storage, while offering a variety of configurable security properties including forward secrecy, post-compromise security, long-term identity authentication, strong deniability, and anonymity preservation. The dissertation includes a complete proof-of-concept implementation of Safehouse and a sample application with a graphical client. Two sub-protocols of independent interest are also introduced: a new cryptographic primitive that can encrypt multiple private keys to several sets of recipients in a publicly verifiable and repeatable manner, and a round-efficient interactive group key exchange protocol that can instantiate multiple shared key pairs with a configurable knowledge relationship

    Deniable Key Exchanges for Secure Messaging

    Get PDF
    Despite our increasing reliance on digital communication, much of our online discourse lacks any security or privacy protections. Almost no email messages sent today provide end-to-end security, despite privacy-enhancing technologies being available for decades. Recent revelations by Edward Snowden of government surveillance have highlighted this disconnect between the importance of our digital communications and the lack of available secure messaging tools. In response to increased public awareness and demand, the market has recently been flooded with new applications claiming to provide security and privacy guarantees. Unfortunately, the urgency with which these tools are being developed and marketed has led to inferior or insecure products, grandiose claims of unobtainable features, and widespread confusion about which schemes can be trusted. Meanwhile, there remains disagreement in the academic community over the definitions and desirability of secure messaging features. This incoherent vision is due in part to the lack of a broad perspective of the literature. One of the most contested properties is deniability—the plausible assertion that a user did not send a message or participate in a conversation. There are several subtly different definitions of deniability in the literature, and no available secure messaging scheme meets all definitions simultaneously. Deniable authenticated key exchanges (DAKEs), the primary cryptographic tool responsible for deniability in a secure messaging scheme, are also often unsuitable for use in emerging applications such as smartphone communications due to unreasonable resource or network requirements. In this thesis, we provide a guide for a practitioner seeking to implement deniable secure messaging systems. We examine dozens of existing secure messaging protocols, both proposed and implemented, and find that they achieve mixed results in terms of security. This systematization of knowledge serves as a resource for understanding the current state-of-the-art approaches. We survey formalizations of deniability in the secure messaging context, as well as the properties of existing DAKEs. We construct several new practical DAKEs with the intention of providing deniability in modern secure messaging environments. Notably, we introduce Spawn, the first non-interactive DAKE that offers forward secrecy and achieves deniability against both offline and online judges; Spawn can be used to improve the deniability properties of the popular TextSecure secure messaging application. We prove the security of our new constructions in the generalized universal composability (GUC) framework. To demonstrate the practicality of our protocols, we develop and compare open-source instantiations that remain secure without random oracles

    Talek: Private Group Messaging with Hidden Access Patterns

    Get PDF
    Talek is a private group messaging system that sends messages through potentially untrustworthy servers, while hiding both data content and the communication patterns among its users. Talek explores a new point in the design space of private messaging; it guarantees access sequence indistinguishability, which is among the strongest guarantees in the space, while assuming an anytrust threat model, which is only slightly weaker than the strongest threat model currently found in related work. Our results suggest that this is a pragmatic point in the design space, since it supports strong privacy and good performance: we demonstrate a 3-server Talek cluster that achieves throughput of 9,433 messages/second for 32,000 active users with 1.7-second end-to-end latency. To achieve its security goals without coordination between clients, Talek relies on information-theoretic private information retrieval. To achieve good performance and minimize server-side storage, Talek intro- duces new techniques and optimizations that may be of independent interest, e.g., a novel use of blocked cuckoo hashing and support for private notifications. The latter provide a private, efficient mechanism for users to learn, without polling, which logs have new messages

    SoK: Secure Messaging

    No full text
    Motivated by recent revelations of widespread state surveillance of personal communication, many solutions now claim to offer secure and private messaging. This includes both a large number of new projects and many widely adopted tools that have added security features. The intense pressure in the past two years to deliver solutions quickly has resulted in varying threat models, incomplete objectives, dubious security claims, and a lack of broad perspective on the existing cryptographic literature on secure communication. In this paper, we evaluate and systematize current secure messaging solutions and propose an evaluation framework for their security, usability, and ease-of-adoption properties. We consider solutions from academia, but also identify innovative and promising approaches used 'in-the-wild' that are not considered by the academic literature. We identify three key challenges and map the design landscape for each: trust establishment, conversation security, and transport privacy. Trust establishment approaches offering strong security and privacy features perform poorly from a usability and adoption perspective, whereas some hybrid approaches that have not been well studied in the academic literature might provide better trade-offs in practice. In contrast, once trust is established, conversation security can be achieved without any user involvement in most two-party conversations, though conversations between larger groups still lack a good solution. Finally, transport privacy appears to be the most difficult problem to solve without paying significant performance penalties

    Polymeric hollow fiber membranes for bioartificial organs and tissue engineering applications

    Get PDF
    Polymeric hollow fiber (HF) membranes are commercially available, i.e. microfiltration and ultrafiltration cartridges or reverse osmosis and gas separation modules, to be applied for separation purposes in industry, for instance to recover valuable raw materials or products, or for the treatment of end-of-pipe wastes to avoid environmental impacts, to regenerate or treat waters for reuse and for the separation of key components or clarification in food and beverage industries. They have also shown important benefits as hemodialyzers, hemodiafiltration or plasma purification devices in patients with liver or kidney damage. The good mass transport properties characterizing the polymeric HFs have opened new research areas of application in the biomedical field, such as the tissue engineering (TE) and the construction of bioartificial organs (BAO). In TE, the HFs act as scaffolds or supports and/or allow high permeance of nutrients and waste removal for cell proliferation and differentiation. In BAO, HFs are used for the fabrication of bio-hybrid constructs that replace the damaged organs of the patient or can be used as in vitro models for therapeutic studies. This review presents the state-of-the-art concerning preparation and application of HFs for TE and BAO and discusses the challenges and future perspectives of the HFs in both field
    corecore